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ABSTRACT

Based on the hypothesis that both flexural and longitudinal
vibrational energy flow can be measured non-intrusively by an optical
technique which can be extended to broadband vibrations, a two-channel
laser vibrometer system is developed and evaluated for cross-spectral
power flow measurements. The cross-spectral power flow results from

tests on small resonant beams and rods are verified by comparison with

ore-dimensional energetics and standing wave power flow results
(obtained with a single scanning laser beam of the two-channel
vibrometer). Among the contributions of the thesis are: development
and validation of the laser technique for measuring flexural power flow
in reverberant fields; introduction of a procedure to maximize phase
accuracy which eliminates phase bias error and coherent noise error; an
investigation into the differential Doppler method for measuring
longitudinal power flow including an analytical model of the effects of

bending on the longitudinal power flow measurements; studies of the

optical parameters which dictate the performance of the reference beam
method and differential Doppler method; and a quantification of how
physical and measurement parameters affect the accuracy of this non-
intrusive two-point vibrational power flow measurement. Also included

are literature surveys covering the measurement of vibration intensity“.
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INTRODUCTION

The flow of vibration energy through a structure can occur in
several forms including flexural waves, longitudinal waves, and shear
waves. Introduced by Noiseux in 1970, the structural intensity method
is a technique which allows one to determine experimentally how this
vibration energy is transmitted or dissipated throughout a structure.
Most of the focus has been on the flow of energy due to flexural waves,
since these are typically dominant from a sound radiation standpoint.
However, the technique is equally applicable to longitudinal waves.
Cremer, Heckl and Ungar (1973) have illustrated how flexural and
longitudinal energy can interact at structural joints which makes
longitudinal intensity an important value from an energy balance
standpoint.

The measurement of vibrational "power flow" or structural
intensity can be accomplished in the flexural farfield by the use of two
closely spaced transducers and a finite difference approximation.

(NOTE: The use of the term "power flow" is widespread in the structural
intensity field despite its inaccuracy. It is actually an energy flux
or simply a power measurement. "Power flow" may be used in this thesis
where it is more correctly a "power" which is measured.) Two
accelerometers have been used in the past to accomplish this task.
Unfortunately, accelerometers can alter the dynamic behavior of the
vibrating structure. Additionally accelerometers cannot easily probe a

surface for the purpose of mapping the structural energy flow paths.




These and other related considerations have hindered the practical
implementation of structural intensity measurements to date.

Consequently, there is a need for a technique which can measure
the real-time structural response simultaneously at two closely spaced
points without mass-loading the structure and without requiring the
repeated bonding of transducers to the surface. This thesis details the
development and evaluation of a two-channel laser Doppler vibrometer
system (TCV system) as a structural intensity probe. This device
focuses laser light to two spots on a vibrating surface and, by the use
of the Doppler shift in the backscattered light, determines the
direction and magnitude of the energy flow-rate by signal processing
methods which have been used for accelerometers. Theoretically, the
instrument can be used to quickly scan a surface to map out the
structural intensity due to surface-normal as well as in-plane waves so
that the energy flow due to three wave types (flexural, longitudinal,
and shear) can be monitored with the same instrument.

The basic concepts of structural intensity and a review of the
various methods which have been used to measure structural intensity to
date are discussed in Chapter I. This is a detailed literature survey
which includes references to many of the problems with the current
intensity measurement techniques.

Chapter II reviews the uses of laser Doppler vibrometry to date,
and presents a description of the TCV system constructed at the Applied
Research Laboratory at The Pennsylvania State University. Additionally,
it details the fundamental principles of vibrometry in the reference

beam mode (which is used for detection of surface-normal vibration) and




vibrometry in the differential Doppler mode (which is used for detection
of in-plane vibration)i Also discussed are noise sources in laser
vibrometry and related electro-optic parameters which can effect
structural intensity measurements when the TCV system is used. This
discussion is relatively brief and is meant to serve as a background to
the discussions related to intensity measurements.

The balance of the text is split into two major parts. The first
pertains to the measurement of flexural intensity using the TCV system
in the reference beam mode, while the second pertains to the measurement
of longitudinal intensity using the TCV system in the differential
Doppler mode.

Chapter III formulates the cross-spectral (two-point) flexural
intensity equation in terms of the TCV system output from basic
vibrometer principles. It also presents two alternate equations for
flexural intensity which are only applicable in a special case and which
are only used in this work for validation of the much more versatile
cross-spectral technique. The chapter then describes the experimental
setup and test procedure used for validation of the TCV cross-spectral
technique and presents the experimentally obtained flexural intensity by
way of the three approaches.

The remaining chapters on flexural intensity focus chiefly on the
optical and electronic aspects of the TCV system in the reference beam
mode. These aspects can greatly influence the measurement accuracy of
the svstem in practical situations and hence they form the evaluation
portion of the thesis for flexural intensity. Chapter IV primarily

describes the electro-optical parameters which ultimately determine the
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vibrometer channel signal-to-noise ratio. This is an important quantity
in intensity measurements as it determines intensity random error.
Chapter V details and analyzes the influence of three potential sources
of intensity error due to TCV system characteristics when in the
reference beam mode. These sources include random error, bias error
{particularly phase bias error), and coherent noise. Phase bias and
coherent noise error are addressed at the same time since their
deleterious effects can be removed simultaneously by a technique
described in the chapter.

Chapter VI introduces the topic of longitudinal intensity. In a
manner similar to Chapter III, it derives the cross-spectral
longitudinal intensity and the two alternate lengitudinal intensity
equations in terms of the TCV output. It also presents the longitudinal
intensity test results and a discussion.

Chapter VII then describes the parameters which influence the
signal-to-noise ratio in the differential Doppler technique. The
cdifferential Doppler technique appears to be rarely used in v Srometry,
compared to the reference beam technique and there is little theory
available on the differential Doppler technique. Therefore the
influence of some parameters on the signal-to-noise ratio is obtained
experimentally. Ultimately the chapter predicts vibrometer signal-to-
noise ratios as a function of both the optical conditions and the amount
of in-plane motion. This lays the foundation for longitudinal intensity

random error predictions.




Chapter VIII presents predictions of random error as a function of
various optical conditions and longitudinal intensity. As explained in
the chapter, coherent noise is not a source of error in the differential
Doppler technique and so is not addressed. Phase bias error is not
addressed in this chapter since it is removed in the same fashion as it
is in flexural intensity measurements.

Chapter IX includes results of studies conducted on vibrometer
signal stability and speckle effects in combined flexural and
longitudinal fields.

Finally, Appendices A through C include mathematical derivations
which support points made in the text.

There are several original contributions of this thesis. First is
the development and implementation of an optical system whi:h can
accurately measure flexural power flow by the cross-spectral method.

lexural power flow can be measured by a single vibrometer if phase
information (from a shaker or an accelerometer) is available. But in
practical usage this approach either adds an extra source (the shaker)
or at least relies on an accelerometer (which can cause inaccuracies due
to phase errors or mass loading as explained in the thesis). This
thesis presents the first reliable truly "non-intrusive" optical
vibrational power flow measurement system which is inher 'ntly amenable
to random vibration measurements where the sources of the power or their
locations are unknown.

A second original contribution is that the thesis ties the two
fields of structural intensity and laser vibrometry together by relating

the various optical parameters in vibrometry to random errors in




intensity measurements. This is useful in practical conditions outside
the laboratory. Photodetector switching (although a carry-over from
conventional intensity techniques) is introduced for the first time as
an optical technique to optimize phase accuracy. Coherent noise and its
removal by photodetector switching is also a new consideration for phase
accuracy in two-channel optical systems which use a single laser.

To the author’s knowledge, the use of the differential Doppler
method for vibration work is rare and its use in longitudinal intensity
measurement is entirely new. The sections on optical noise random error
and laser speckle in the differential Doppler method are also original

contributions.




Chapter |

LITERATURE SURVEY OF STRUCTURAL INTENSITY
AND ITS MEASUREMENTS

The measurement of structural intensity was first introduced by
Noi: :x in 1970. Recognizing the ne2d for a technique to trace
vibrati... propa‘ation more simply thuar correlation techniques, he
developed an approach for measuring the flow of power due to flexural
waves. This approach was limited to the assumptions of negligible
material damping (real Young's modulus) and negligible rotational
inertia and shear deformation (classical plate theory).

The instantaneou. -tensity (power per unit width) can be defined
in some direction x as:

Iy = Qxf + M'xax + Mxyéy (1.1

Where Q, is the shear force i e x-direction, M, is tie x-directed
bending moment, M,, is the twisti:. moment, é is the no mal velocity and
éx and é, are the time rate of change »f slope in the x ind y directions
as shown in Figure 1.1.

Typically one is interestel in the time-average intensity:

Iy = <Qe€>y, + M85, + My byo . (1.2)
whic. Noiseux separated into a shear force component and a moaent
component s. that:

Hx-nx£+nm (1.3)

In any case, a knowledge of ."e internal shear and bending moments is
required. However, thev can be related to the normal displacement, £,

from elasticity theory by:




y z
Mxy
6
X ey
Mx

Figure 1.1 Directions of Displacements, Slopes, Forces
and Moments (Source: Noiseux 1970)




3% 3%
M, = -8B 5;; + v 5;3 (1.4)
626
My = Myx = B(Ll-v) 30 (1.5)
3 [azs aze]
%= - B |ad a2 (-6
where
Y1
B - 1 - 2

and Y is Young’'s modulus, v is Poisson’s ratio and I is the moment of
inertia per unit width in the x-direction. Consequently, knowledge of
the material properties, geometry, and spatial and temporal derivatives
of the displacement at a point on the plate will provide the magnitude
of flexural power flow in the x direction. By switching subscripts x
and y in the preceding equations the intensity in the y direction can be
evaluated. The resultant intensity at the point is then the vector sum
of M, and IL,.

a

For a beam uniform in the x direction, 5; = 0 and the twisting

moment, M,, is zero so that the intensity becomes:
M, = <Q.>, + M b, >, (1.7)
where now Q, and M, are reduced to:

3%
Q. = - B 3 (1.8)

3%¢
M, - -B Pyl (1.9)

and B = YI since Poisson’s ratio no longer plays a role.
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For the plate, however, an exact measurement of the intensity at
any point requires that all of the parameters in Equation 1.2 be
evaluated. This is an extremely difficult procedure. Noiseux, in order
to make the measurement of intensity more feasible, noted two things.
First, he noted that the shear component <Qxé>‘, and total moment
component [<Mxéx>t + <1gwéy>c] of intensity were equal in the freefield
for simple harmonic waves. This permitted the measurement of only one
of the quantities, i.e. either I, or Il,.

Second he noted that the total moment component I, could be
approximated in special cases by a modified moment component, H;m

formulated as:

n/

xXm

=<(Mx"'My) 191> ~ I (1.10)
(1 +u) N

This avoided the necessity of measuring M,, which, according to Equation
1.5 requires the spatial rate of change in the x direction of the

surface slope in the y direction (or vice-versa). Equivalently, M,, can

xy

be written as:

2B
My = My = [‘B’}[l - v ‘y,y] (1.11)
where B and v are as defined previously, h is the plate thickness and

Yy 1s the shear strain which can be expressed as:

d€x &y

Ty dy T ax

(1.12)

where £, and , are the x and y displacements of the point. But

regardless of the form of M,,, it does present difficulty in its
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measurement and Noiseux developed the approximation in Equation 1.10 to
circumvent this for restricted cases.

For example, if the displacement field is such that:

3% 3%
— L —— o 12
%z T 2y kg (1.13)
w?m
where k* = B and m is the plate surface density and w is the

circular frequency then the quantity (M; + M;) is easily measured.

This is because (M; + M) can be writter -

Tiete 9%
(Mg + M) = - B[1 = Vj 3zt 5;7 (1.14)
so that
(Mg + M) = - B(1 + v)k% (1.15)
and therefore I’ would be:
n, = <‘£_’_My_)é,> = - Bk? <€6,>, (1.16)
(1 + u) N

This is a quantity which can be measured easily at a single point
(as will be described later).

The displacement field in Equation 1.13 occurs for plane harmonic
waves in the "freefield" (i.e. in a field not subject to exponential
decay of the vibration amplitude which occurs near boundaries for beams
and plates).

Summarizing the restrictions on measuring I, by way of

Equation 1.16:




(1) The measurement must be made in the freefield
so that I,y = I, and so that, therefore,
M, = My + My = 2N,,. Tuis allows measurement
of the moment component only. (I, » N in the
nearfield).

(2) Again, the measurement in the freefield allows
the use of I’ instead of Il since these are
shown to be equivalent in this situation and
II' .y is easily measured.

Therefore the measurement of the x-directed intensity in the freefield

can be measured as:

M, = 21" = - 2Bk? <€6.>, (1.1
and in the y direction as:

I, = - 2Bk? <é9,>c (1.1

and the resultant freefield flexural intensity is II = /HETZTTETT
Noiseux measured the freefield flexural intensity by two
accelerometers; one supplied the normal acceleration (and the normal
displacement by way of integration) and the other supplied the
rotational velocity at the point measured by positioning the
accelerometer mounted on its side. The combined "biaxial acceleromete

is shown in Figure 1.2. The angular velocity is provided by:

f a,dt

0,-—T’ (1.1

12

7)

8)

r"
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Figure 1.2 The Biaxial Accelerometer (Source: Noiseux 1970)
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where d is the distance between the axis of the linear accelerometer and
the neutral plane of the plate and a, is the acceleration in the x-
direction.

After illustrating the above approximations in beam and plate
freefields and discussing the approximations in nearfields, Noiseux
presents experimental results obtained from using the "biaxial
accelerometer” for measuring the freefield flexural intensity on an
aluminum plate by way of the modified moment component.

The two accelerometers comprising the "biaxial accelerometer” were
housed in a cube which was internally threaded so that it could be
screwed into the plate through holes made at various measurement
locations. The accelerometer channels were phase matched to 1/2°. One
third octave band noise was applied to the plate by way of a shaker
while the plate was suspended vertically by thin wires.

Turning the rotational accelerometer 90° allowed measurement of
'y, after measuring II',,. Results showed that the intensity vectors
pointed away from the source and when the intensities were summed along
a line through the plate the total power was shown to be comparable to
the power input by the shaker. The intensities at the plate edges,
where the freefield assumption does not hold, showed vectors with poor
directionality as would be expected.

Two remaining points should be made regarding Noiseux’s analysis.
First, although he does not directly formulate the case of random
excitation, he considers it as equivalent in the limit to many closely
spaced sinusoidal components, the total intensity being the sum of the

intensities for each of the component frequencies. Second, he
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illustrates how for a pure standing wave the intensity is zero. These
points are paraphrased below.

In the freefield of a uniform beam, for example, the displacement

field is given by (suppressing e!“*, a constant term in the equations):
£(x,w) = [A(w)e X + A’ (w)elk¥) (1.20)

where the two terms are right and left travelling waves. Note that
since k is real, material damping is considered negligible so that only
end losses are considered. Consequently, the amplitude of the reflected

wave, implies a certain reflection coefficient at the end of the

A'(w)
beam, R(w) = NS The intensities for such a case are:
B
Tee = T = - 3 WK3(JA]2 - |A'}2) (1.21)

So that if R = 1 then I,y = NI, = 0 for zero material damping. For the

case of "j" simultaneous excitation frequencies:

£(xw) = 2 [Aje™iki® 4+ A'elkx) (1.22)

B
My = Mee = - 3 ;2 wikI[|A(w;) |2 - |A’ (w;)]?] (1.23)

After Noiseux’'s work on structural intensity there was apparently
little done in the field until 1976 when Pavic, also addressing flexural
vibrations (considering their efficiency in radiating sound), proposed
various methiods of measuring intensity in a plate by way of using finite
difference techniques.

Like Noiseux, Pavic also used simpiified bending theory to relate
surface motions to internal shear forces and bending moments. He also

considered a material with negligible loss factor (real Young'’s modulus)
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and analyzed a flat uniform plate. The finite difference approximation
to the ~various spatial derivatives and the associated transducer
configurations and signal processing procedures for both nearfield and
farfield measurements are the primary contribution of the work.

In an expanded form of what was previously laid out by Noiseux (in
Equations 1.2 through 1.6) Pavic related the instantaneous intensity to

the surface normal displacement £ by:

I, (x,z,t) =B [;J, (sz) .g% - [2_:(_62 + v g_:ez] E%E

Sl -y) 2% 9% ]

(1.24)

Jdxdz 0zdt

3
where B is the plate bending rigidity per unit width B = L_TXE__al'
121 - v

v is Poison’s ratio and V? is the two-dimensional Laplace operator. The
first term in the brackets represents the shear component, the second
term the bending moment component, and the third term the twisting
moment component. It is these last two terms which Noiseux set equal to
his modified moment component in the flexural farfield and measured at a
single point to obtain the intensity.

For the general case (nearfield or farfield) of one-dimensional
flexural wave propagation (e.g: flexural vibration of a beam) Pavic
approximated the axially directed time average intensity, using Equation
1.24 and finite difference approximations, as:

1 '—'< XBg [éz(l‘fa - &) - é153]> (1.25)

t
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The finite difference approximations to the spatial derivatives are:

1 aé 1
§ = 7 (§a + £3) o 3x T a4 (€2 - €3)

3% 1
I = oAz (€1 - &2 - €3 + &)

3% 1
30 = G- 36, + 3€5 - €L) (1.26)

Here, A is the transducer spacing, £, is the deflection at point n, én
is the velocity at point n in the transducer array shown in Figure 1.3
and it is the intensity at point x, which is being measured. Of course
the spacing A must be close enough for the finite difference
approximations to be accurate. (This paper does not address the choice
of A but Redman-White (1983) makes recommendations as noted later in
this review.) The analogue circuit diagram for processing the signals
as required by Equation 1.25 was also detailed in his paper.

For the special case of sinusoidal one-dimensional waves where
both right and left travelling propagating waves and right and left
nearfields exist (for a finite undamped beam), Pavic showed that the
expression for £(t) yields an expression for the average intensity which
has a component du.: to the nearfield effects. However, this component
was evaluated to be typically an order of magnitude smaller than the
propagating wave components if the number of wavelengths along the beam
is at least one. Consequently he concluded that the nearfield
contribution can be neglected as a component of the measured power flow

if the beam contains at least one wavelength.




Figure 1.3
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Transducer Array for General 1-D Flexural
Wave Case (Source: Pavic 1976)
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Neglecting the nearfield component of intensity, he showed that
the expression for intensity becomes:

(Bm)llz
.9:%3

My = <€1€2>¢ (1.27)

where subscript "s" represents sinusoidal motion, A is the transducer
spacing, f is frequency, m is the mass per unit area, él is the
acceleration at location 1 and éz is the velocity at location 2.
Therefore only two transducers on a beam are necessary for intensity
measurements under this condition.

For other than single sinusoidal waves such as a composite wave
consisting of j frequency components Pavic derived:

I =B 32 2nfki(A% - AD) = = (1) (1.28)
J J

which states that the total intensity is simply the arithmetic sum of
the intensities contributed by the individual frequency components.
This is directly analogous to Noiseux’'s expression in Equation 1.23.

For narrowband noise with a center frequency of f, he obtained:

(Bm)'/2 (1.29)

e b <é1[(2xfo)2§2 - (52]>t

(The positive direction defined from 2 towards 1). And for broadband
noise Pavic suggested a similar approach as for narrowband noise but
with the use of successive bandpass filtering. Finally, for one-
dimensional progressive flexural waves, Pavic showed that the total
intensity in the freefield can be approximated (by way of a finite
difference approximation) in terms of Fourier transforms of the

velocities at two closely spaced points, separated by a distance A as:
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(1.30)

where T = averaging interval, £, is the Fourier transform of the
velocity at point N and the asterisk represents a complex conjugate and
B, and m are as defined previously.

Pavic’s treatment of two-dimensional waves is less extensive:; he
proposed an array of eight transducers for the general case as shown in
Figure 1.4 and developed the corresponding finite difference
approximations to Equation 1.24. The analog circuit diagram to perform
signal processing appropriate to Equation 1.24 is schematized. Pavic'’s
paper does not mention experimental results for either the beam or the
plate.

In 1980, Goyder and White published three consecutive papers using
the concept of power flow in the theoretical evaluation of the ability
of foundations and isolators to minimize the flow of power from a point
source to a structure and thus minimize the power available for
subsequent sound radiation. Although they did not address measurement
techniques, the paper derived relationships for power flow in simple
structures (rods, beams, and plates) of intfinite extent which include
negligible and moderate damping, as well as relationships for power flow
in infinite beam-stiffened plates. Power flow expressions were also
developed for single and two stage isolation systems.

Also in 1980, Verheij advocated the usefulness of frequency domain
processing as oppcsed to time domain processing. This approach offers

the advantage of channel switching techniques for the elimination of
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Figure 1.4  Transducer Array for General 2-D Flexural
Wave Case (Source: Pavic 1976)
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errors caused by phase mismatch (Chung 1978). But its chief advantage
is in that an FFT analyzer can be used to process the signals.

For bending waves in a beam he shows that in the farfield, using a
finite difference approximation where A is the distance between two

accelerometers, the total power due to flexural wave motion is:

2 (Bm) /2 Jw Im G(ap,a,,f)
I -
0

- > af (1.31)

[

where G(a,,a;,f) is the one-sided cross-spectral density function
between the two accelerometers and Im refers to the imaginary part.

This is similar to the expression in Equation 1.30 from Pavic, but is in
terms of accelerations rather than velocities.

For nearfields in beams, where Pavic proposed a finite difference
approach using four closely spaced accelerometers (separated by distance
A), Verhelj developed the associated cross-spectral equivalence for the
total power based on Equation 1.25. This consists of three components
of integrated cross-spectra similar to Equation 1.31.

For longitudinal and torsional waves, when using closely spaced
accelerometers, the power expressions in terms of cross-spectra become

as follows. For longitudinal power flow:

-SY Im G(a,,a;,f)
~ J: - df (1.32)

w

n—

and for torsional power flow:

-T Im G(a,,a,,f)

n-7 | = df (1.33)
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where S is the cross-sectional area, Y the Young’s modulus, T the
torsional stiffness, a; , are linear or angular accelerations (as
appropriate) and 11 is the longitudinal or torsional power flow at the
measurement locations as shown in Figure 1.5.

For each of the two measurement locations in Figure 1.5 there are
two accelerometers and the input at the location involves a summation of
the signals. Verheij recommended summing the two signals at each
location in the time domain and continuing the remainder of the
processing in the frequency domain. This averaging of two signals for
each input then requires that the previous equations be altered; the
longitudinal power equation must be divided by four and the torsional
power equation must be divided by D2.

Rasmussen in 1983 reported measurements of the intensity of
flexural plane waves in a plate. He used Noiseux's method of measuring
the "modified moment" which for plane waves in a freefield is equal to
one half the total intensity. The appropriate expression for the total

power per unit width (the intensity) is:

w t
where §, is the x-directed angular velocity and £ is the acceleration at
the measuring point. This "vibration intensity transducer" was

constructed as shown in Figure 1.6.

The acceleration at the measuring point was approximated as:

—

§ =5 (€, + € (1.35)
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The Vibration Intensity Transducer
(Source: Rasmussen 1983)
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and the angular velocity was approximated as
: £, - & 1.36
6, = [_éz__gi]dt (1.36)
Ar

so that the approximation for the intensity was

I = 2./wa <% (E, + &) ¢, - &) dt> (1.37)

- N3 .

where Ar was the distance between accelerometers.

Using this transducer, intensity measurements were made on an iron
plate excited by a shaker and damped at two points by viscous dampers.
At each excitation case (single frequency) there were three power levels
recorded. The first was the power delivered by the vibration exciter

found by simultaneously measuring the exciter force and a.ive point

a
acceleration. This provided the input power I, = [E;E e F sin ¢]

where ¢ was the phase angle between the force and acceleration. The
second power level was measured by integrating the intensity at a number
of points around the source. The third power level was the power
absorbed by the viscous dampers as measured by integration of intensity
around these two points. The three levels agreed very closely
(typically within 3% of one another) for the set of single frequencies
tested. Furthermore the directionality of the intensity vectors
provided verification; the vectors typically pointed away from the
source and toward the two viscous dampers.

Rasmussen noted that the accuracy of the vibration intensity
method, in the'high frequency range, is determined primarily by the

mass, the mounting resonance frequency, and by the mounting base area of
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the transducer; the mass must be small to prevent mass loading, and the
first resonance of the mounting base area saould cover less than one
quarter of the bending wavelength. The low frequency limit was due co
the requirement to be in the freefield, which for long flexural
wavelengths precluded any legitimate testing area on the plate.

Also in 1983, Redman-White published a paper dealing with the
experimental measurement of flexural intensity. He evaluated two
accelerometer techniques for measuringz the power flow in the farfields
of uniform beams and a four linear accelerometer array technique for
measuring the power flow in the farfield of uniform plates.

First Redman-White illustrated that for one-dimensional waves, a
'two-degree of freedom accelerometer which is sensitive to linear
acceleration as well as rotation at a point can serve to measure a
signal proportional to the shear force component of power flow and hence
(in the farfield) total flow. However, he cited problems with this
technique and continues by discussing the two linear accelerometer
finite difference technique.

The possible sources of error in this technique, according to
Redman-White, include: nearfield errors, finite difference errors,
bandwidth limitations, and instrumentation errors. Nearfield error,
which arises due to measuring only one power component (and assuming the
other component is equal) in the nearfield, can be shown to be +20% if
measurements are made as close as A/10 from discontinuities. He
suggested avoiding measurements within A/2 of discontinuities in the

structure.
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The error associated with the finite difference approximation to
the spatial derivatives in the intensity equations leads to an
underestimation of the actual power by the following relationship:
ka
Oactual = Musasured * Tin (ka) (1.38)

where k is the wavenumber and A is the accelerometer separation. This
implies that A should be kept small but this correction can be applied
to the data, especially for pure tone excitation. (Redman-White
suggests keeping A between 0.15X and 0.20X).

Bandwidth limitations refer to errors in using the equations,
derived for single frequency excitation, for finite bandwidth excitation
such as the error due to the variation of kA with frequency. Redman-
White noted that a bandwidth ratio (§f/f,) of 0.3 in the autospectrum of
the wave motion yields a measurement error of 3%. He notes, however,
that intensity patterns can change very rapidly with frequency.

Instrumentation errors include those associated with channel phase
errors (phase mismatch), with transducer placement accuracy, and errors
in the quadrature function (which he uses on one of the acceleration
signals to obtain the expression for the total power flow) for the one
accelerometer signal. The most important error, which is the "main
limitation of any intensity measurement system,"” is system phase
tolerances. A standing wave will have an erroneous power flow component
if a phase mismatch is present between the channels. This will have a
value:

YIk2wB?2

error = " p {sin ¢ [cos (kA - cos (2kx - kA))]) (1.39)
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where ¢ is the phase mismatch. In order to minimize this error he
suggested using as large a value of A as practical. For single
frequency excitation, the error due to a large value of A can be
corrected according to equation 1,38 but a large value of A causes the
details of the intensity to be lost.

He also discussed effects of phase errors in the quadrature
operation (which is required by his time-domain approach to obtaining
the power flow). Most of these same errors are applicable for two-
dimensional measurements. There is, however, an additional error due to
the angle which the wavefront makes with the axis of the
accelerometers - a trace wavenumber effect when four accelerometers are
used simultaneously to determine the vector. Redman-White plotted the
percent error in the power flow versus incident wave direction for
various accelerometer spacings. This is applicable to the accelerometer
measurement technique where simultaneous measurements of the intensity
components in two orthogonal directions are obtained by placing the
accelerometers symmetrically at a distance of A/2 from the measurement
point.

Beyond the points listed above Redmar-White also cautioned that
the method of mounting accelerometers can adversely effect phase
tolerances. Additionally he emphasized the importance of dynamic range
capability in error reduction; with typical instrumentation, a standing-
to-propagating wave ratio of 20:1 will probably yield meaningless power

flow measurements.
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Researchers at the Naval Research Laboratory, published a paper
illustrating a non-contact technique for the measurement of
structureborne intensity in plates (Williams, Dardy, and Fink 1985).

The object of this approach was to measure structural intensity without
the use of accelerometers since these transducers can lead to problems
due to their transverse sensitivity, their weight and rotational
inertia, and due to the necessity of phase and amplitude matching of two
accelerometers for intensity purposes.

This technique, called SIMAP (structural intensity from the
measurement of acoustic pressure) uses a single hydrophone/microphone to
measure the pressure over a plane located as close as possible to the
vibrating plate. Using principles of nearfield acoustical holography,
the normal surface velocity on the plate is extracted from the pressure
measurement. Normal acoustic intensity at the plate surface is
available from SIMAP measurements also.

The measurement process involved scanning a hydrophone at 1089
points 1.3 cm from a submerged plate surface and recording the pressure
amplitude and phase with respect to the vibration generator. Since
SIMAP uses input from the "entire" surface, all of the various spatial
derivatives in the flexural intensity expression are available and no
structural nearfield restrictions are necessary. Spatial derivatives
were determined by two techniques. The first was a point-by-point
finite difference technique which (similar to Pavic’s proposed finite
difference approaches) used data local to the point in question to
determine the spatial derivatives at the point. The second was a "full-

field" technique which evaluated spatial derivatives at a point by a
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Fourier transform technique which used the entire measured velocity
field and was considered more accurate.

Experimental results showed several interesting points. First,
the measured mechanical power radiating from the driver region was
typically fifteen percent lower for the finite difference approach
versus the full-field Fourier transform approach to finding spatial
derivatives (the exact finite difference algorithm used was not
specified). Second, the value of this power evaluated from impedance
head measurements was in close agreement with that calculated by the
Fourier transform approach. And third, although the power radiated into
the fluid from the driver region itself was typically only 5% of the
total mechanical power input, the power radiated by the entire plate
into the fluid was typically 40% of the mechanical power input.

Finally, results showed that structural intensity is a more
reliable approach to locating vibration sources than acoustic intensity.
Acoustic intensity according to the authors, generated psuedo-sources
whereas structural intensity correctly identified the real sources.

A second non-contact approach to measuring flexural structural
intensity was published in 1985 by Clark and Tucker. They used real-
time holographic interferometry of a vibrating plate by use of a
thermoplastic hologram recorder which develops in place. The
displacement of the plate could be viewed through the developed hologram
of the static object by means of interference fringes. The authors
pulsed the {llumination in quadrature with the sinusoidal excitation and
observed fringes indicative of a travelling wave. (At quadrature with

the forcing function a pure standing wave would show zero displacement).
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The direction of the intensity vector is perpendicular to the
propagating wave fringes and the magnitude of the intensity is
determined from the spatial derivatives of the propagating wave
displacement field assuming sinusoidal time variation.

Also in 1985, Pavic published two consecutive papers concerning
the measurement of vibration with strain gages, preferred over
accelerometers for their virtually non-existent mass and thickness
and their relatively low price. In the first paper (1985A), Pavic
developed strain gage bridge configurations which supply the
acceleration (or velocity) at a point by way of finite difference
approximations to spatial derivatives. This is done for in-plane and
bending vibrations in plates and beams for both nearfield and farfield
conditions. (Farfield simplifications of the bridge configurations are
made by virtue of the approximation that the vibration in the farfield
is dominated by propagating waves which, within the small measurement
area, display the properties of plane waves). The number of gages can
be large (as many as ten are required for flexural nearfield in plates)
but in the farfield the number required are: four for in-plane plate
accelerations, two for flexural plate velocities and one for flexural
beam velocities.

Pavic (1985B) discussed the error in the first and second order
spatial derivatives due to the finite difference approximations. These
are a function of the gage spacing, the vibration field (i.e.:
frequency, for plane harmonic waves) and the wave propagation angle.
Additionally he discussed the errors due to the measurement accuracy of

the various strain gage bridge configurations. (The error due to the
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finite gage length, for a gage spacing much smaller than the gage
length, is insignificant in comparison to the error of the finite
difference approximations).

Based on an expression for systematic errors in the strain gage
bridge configuration (caused by finite difference and bridge accuracy
errors) and based on an expression for statistically independent
instrumentation noise, Pavic (1985B) developed expressions for the
optimum gage spacing and minimum surface acceleration levels for certain
signal-to-noise ratios. These are developed as a function of frequency
and wave type (flexural or in-plane). For comparison, an analogous
development was made for accelerometers where expressions for optimum
mass and acceleration threshold are determined versus frequency for a
desired signal-to-noise ratio. These expressions are based on the
simple facts that for strain gages a small spacing yields low finite
difference and gage bridge errors but a small signal (since the strain
gage bridge signals result from strain gage differences). This occurs
in a fixed instrumentation noise background. In an analogous fashion
the systematic error in accelerometer measurements decreases as its mass
but then so does its signal in a fixed noise background.

Pavic (1985B) reported experimental results using the strain gage
bridge configurations for deriving acceleration at a point and compared
the resulting signals to accelerometer signals. For in-plane
accelerations of a plate, a bridge consisting of eight gages was used on
each side of the plate to subtract flexural wave signals. The output
compared favorably to accelerometer output except at higher frequencies

(approaching 4 kHz). Pavic explained that some of this was due to the
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transverse sensitivity of the accelerometers (arranged one on each side
to subtract flexural effects) which allowed for some of the flexural
signal to contaminate the longitudinal results.

For plate flexural accelerations a bridge of ten gages was
employed (for nearfield conditions), and for flexural velocities a
bridge consisting of two gages for farfield conditions was employed.
Good matching between bridge and accelerometer waveforms for four octave
bands (500 Hz, 1 kHz, 2 kHz, 4 kHz) were obtained.

Good waveform matching was also obtained with one-dimensional
longitudinal and flexural waves in a pipe where combinations of six
longitudinally oriented gages were used.

Pavic's development of systematic error in accelerometer
measurements, in Appendix II of his second paper (1985B), is of
interest. Pavic formulated the total systematic error due to
accelerometer resonance and due to mass loading purely in terms of its
mass as:

f2m?/3 i2nfm
c: (b

€p = Hyor(f) - 1 = (1.40)

where:
Hyor = the accelerometer frequency response function
f = the vibration frequency (Hz)
C = a constant of proportionally relating the accelerometer
resonant frequency to the cube root of its mass
i - /1
Z(f) = the complex impedance of the structure at the
accelerometer location

m = accelerometer mass
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This error is complex since the accelerometer output contains frequency
dependent deviations of both amplitude and phase from the true
acceleration.

Quinlan, in 1985, wrote an experimental thesis on the use of a
four-accelerometer probe in the flexural farfields of beams and plates.
Quinlan measured the "modified moment"” component and multiplied by two
for the total intensity in the farfield (as did Noiseux). As in all the
previous work (and work to this date) the analysis applied only to
frequencies where the flexural wavelengths were large compared to cross-
sectional dimensions so that classical plate theory is assumed
(negligible rotational inertia effects and transverse shear
deformations).

Quinlan introduced the concepts of potential and kinetic energy
density which can be measured using the same apparatus. He also
defined, analogous to acoustical power flow, both active and reactive
intensity; the active intensity corresponds to the travelling wave
intensity and the reactive intensity (ignored by most researchers in
intensity measurements) corresponds to the standing wave intensity.

In order to increase the signal-to-noise ratio for his active
intensity measurements he used constrained damping layer material on
portions of the test structures to make power flow more detectable.

Using basic definitions of power flow, farfield assumptions,
finite difference approximations, and cross-spectral definitions he
showed that for single frequency excitation (to which he limited the

experimental work) the total power can be written as:
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-2/Bm JBm

My = A Im(S,;) + 1 e (Sy; - S32) (1.41)

where

B = bending rigidity of che plate

m = mass per unic area of the plate

w = circular frequency

Ar = accelerometer spacing

i = /1
Sj1, S22, S;; = auto and cross-spectra of the two accelerometer signals
The real part of the expression is the active or propagating intensity
and the imaginary part is the reactive or non-propagating part of the
intensity.

Quinlan did not use simultaneous input of all four accelerometers
but rather used each pair separately in Equation 1.41 to determine the
magnitude of the intensity vector in each of the two orthogonal
directions. The resultant intensity is the vector sum of these two
values.

The probe, which housed the four accelerometers, was positioned
automatically. Due to the use of four accelerometers, the probe did not
have to be rotated to locate the intensity vector direction. Only probe
translations, controlled by computer, were necessary.

Probe weight was considered in finding the frequency above which
the plate response would be down by at least 3 dB due to mass loading,
assuming that the test structure could be modeled as a lumped system at
the point of interest and assuming a fairly weak modal response. The

influence of sensor mass, under these assumptions is illustrated in




37
Figure 1.7 reproduced from Quinlan’s thesis. Effects of mass loading as
a function of spatial location on the plate were not investigated.

The accelerometers were in a single magnet which mounted to the
surface. Some consideration was given to mounting as it was known that
different mounting techniques could seriocusly affect accelerometer
performance.

Quinlan reviewed errors associated with channel gain and phase
mismatch. From Elko’s work (Elko 1984) the normalized bias error for

the active intensity defined as:

M(w) - M{w)
€p(w) = (o) (1.42)

s

where II(w) is the measured intensity and I(w) is the true intensity, is:
ep(w) = |Ho(w) | [Hy(w) [l + §(w) cot ¢y,(w)] - 1 (1.43)

where |H(w)| are the moduli of the frequency response functions of the
two channels, §(w) is the phase mismatch in the two channels, and ¢,,(w)
is the actual phase difference between the two points on the structure.
Consequently the magnitude of the gain in the channels plays a role in
the bias error, but for the case where the actual phase difference
¢,,(w) is very small the bias error can be very large even for a small
phase mismatch. For a fixed separation between the transducers, this
occurs at low frequencies.

If it is assumed that the gain in each channel is unity and that
channel mismatch is small, Equation 1.43 can be approximated as:

sin{§(w)) Re[S;5(w)]
» = Im(Sy,(w) ]

(1.44)
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where Re[S;;(w)] and Im[S;3(w)] correspond to the real and imaginary
parts of the cross-spectrum between the measuring points. This implies,
as noted by Quinlan, that measurements of active power flow in highly
reactive fields (strong-standing wave fields) can yield large bias
errors even for a small phase mismatch between the channels.

In order to minimize these effects Quinlan calibrated his probe to
effectively remove gain and phase mismatch errors. This was done by
first determining the gain values of each channel by normalizing the
accelerometer sensitivities to the accelerometer sensitivity of the
first channel. This provided relative gain values. Second, the phase
mismatch for each pair of accelerometers versus frequency was
determined. The measured cross-spectrum Gg,;'(w) could then be corrected
to obtain the "true" cross-spectrum Gy (w) according to the following
equation:

Goy' (w)

- - w)
Cor(@) = TR @ H@ | & (1.45)

Where

|Hg(w) | is the gain of Channel O

JHy(w) | is the gain of Channel 1

and ¢(w) is the phase mismatch between the two channels.
This correction was made automatically during the data acquisition
process. Transfer functions and phase mismatch data were obtained by
setting the intensity probe on a uniformly excited piece of steel plate
and taking appropriate spectral quantities.

Qualitatively (with respect to relative vector amplitudes and
directions) the active intensity results were generally very good (for

example: the system was capable of detecting losses due to the presence
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of a patch of damping material as well as effects of a blocking mass).
A quantitative check of the data was obtained by comparing the power
input by the shaker to the line integral of intensity measured around
the shaker. This showed that over the complete frequency range tested
(from 300 Hz to 1000 Hz) the power difference ranged from 6.8 dB to 4.4
dB. Quinlan attributed the difference at some frequencies to a problem
with phase measurement between acceleration and force data in the
impedance head. At high frequencies he attributed the differences
possibly to accelerometer cable weight, probe weight, or probe
dimensions.

In a report to NASA entitled, "A Study of Methods to Predict and
Measure the Transmission of Sound Through the Walls of Lightweight
Aircraft”, written in 1986, researchers at Purdue University reported on
the use of the two accelerometer implementation of structural intensity
(Bernhard et al. 1986). Limitations were discussed including those
fairly well-known such as farfield limitations, propagating wave-to-
standing-wave ratio limitations, probe sensitivity, finite difference
limitations, and limitations due to channel gain and phase mismatch.
However they also reported that for thin plate applications, the probe
inertia significantly affected the power input to the plate and when
uncompensated the intensity is not accurately measured. It was also
noted that this effect changes with damping.

Finite element modeling using ANSYS finite element software was
also used to calculate power flow and compared favorably with power flow
measurements in both one- and two-dimensional geomectries.

The structural intensity portion of the report was a review of

Mickol’'s thesis (Mickol 1986). Mickol used a boundary value analysis to
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investigate the effects of accelerometer mass, rotational inertia and
position on the response of a beam and on the power input of a shaker
assuming a constant amplitude forcing function. As expected, for beams
with low moments of inertia these effects can be significant, especially
at natural frequencies.

As stated, Mickol used finite element modeling using ANSYS to
predict the intensity vector field. This was done for a flat plate with
a point damper and gave good qualitative results when the "moments
formulation" was used. He suggested that finite element analysis would
be a useful tool for predicting power flow in built-up structures.

The "intensity transducer" he used was a two-accelerometer probe
with the accelerometers mounted on the sides of an acrylic spacer. The
0.5-inch probe spacing allowed for a frequency range between 120 Hz
(which corresponds to A/20) and greater than 2000 Hz (for a A, .
spacing). The intensity results were validated by comparing the power
input by the shaker (from a force gage and accelerometer) and the
contour integral of the intensity around the shaker. For plate
measurements, these compared fairly poorly (with a discrepancy of
20 dB).

For beam measurements, the two power calculations also agreed
poorly. However, it was found that the inconsistent mechanical power
flow due to the repositioning of the probe with each measurement is what
caused the problem. When the probe’s effect was considered the
agreement was found to be much more favorable.

Mickol used the probe switching technique to null out the effects
of channel mismatch. This improved the agreement of the injected and

integrated powers by 7 dB in the high frequency range for tests on a
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one-inch wide beam. He concludes that power comparisons can be quite
favorable if several precautions are taken. These include having some
form of compensation for mismatch (like switching), using proper
excitation (i.e.: avoiding the shaker from inputting power in a form
which cannot be detected by the transducers), and accounting for the
probe’s inertial properties. Also, as he later noted, the phase
mismatch between the force gage and accelerometer used in power
injection must be slight compared to the phase difference which actually
occurs.

Pavic, in 1987, proposed a novel concept for power flow in
structures called "structural surface intensity." The potential
advantages of this approach to viewing structural power flow would
include a capability to handle structures other than uniform beams and
plates (as previous experimental structural intensity work was limited
to) and a capability to cover more than simple longitudinal and flexural
vibration modes. This technique would be characterized by its
insensitivity to the geometry of the structure.

The components of surface intensity are defined such that:

N3 = - <oxV>y - <TryVy>y (1.46)

and
I = - <oyvy>y - <7y (1.47)

where I} and I} are the x and y directed surface intensities, o, and o,

are surface normal stresses 7, and r,, are surface shear stresses, v,

yx
and v, are surface velocities. (The minus sign is chosen to satisfy

established conventions on stress orientation so that the positive value

for an intensity component indicates that power is flowing in the




positive direction of the coordinate axis). Since stresses cannot be
measured directly, Equations 1.46 and 1.47 must be cast in terms of

surface strains so that:

nm, =-G 2 . <(ex + uey)v’>t + <‘7xyvy>,, (1.48)
1-v)

1]

m

2
-G . <(ey + fo)Vy>c + (Txy Vi, (1.49)
(1-v)

where G is the material shear modulus and v is Poison’'s ratio. In terms

of cross-spectra, Equations 1.48 and 1.49 become:

1t =2GRe [ [ 2 ) (Sexvy + vSeyvy) + S'yxyvy]df (1.50)
1 -y
I} =2GRe [ '(1 2_V) (Seyv, + vSegvy) + S-yxyvx}df (1.51)

Only the real part of the spectra correspond to the net energy flow.
The imaginary part does not have a definite physical meaning; it does
not represent the "reactive" power (the difference between the absolute
instantaneous and net power flow.)

Measurement of surface intensity requires detection of surface
strains and in-plane velocities. Pavic noted that the requisite strains
(including the shear strain) can be obtained by a suitable strain gage
rosette (three gages positioned at 0°-45°-90°) and that the in-plane
velocities can be obtained by a variety of transducers, although he
stated that "normally available non-contact ones would be inadequate for
intensity application as these are insensitive to in-plane motion."

Pavic discussed possible limitations on the measurement accuracy

of this technique. These would be due to: transducer size, equipment




44
noise, and signal processing averaging period. In regard to transducer
size he addressed the problems associated with using accelerometers to
measure in-plane motion and suggested a somewhat complicated procedure
using two accelerometers in order to cancel out spurious signals.

He noted that equipment noise would probably be dominated by
strain gage noise since the surface strains in structureborne sound are
typically low, thus providing a low S/N ratio. He suggested that the
lack of correlation in strain gage and accelerometer noise should
ninimize the effects due to the multiplication-averaging process.
Fortunately this technique, according to Pavic, is not sensitive to
small phase mismatch in the instrumentation channels since the results
are a consequence of independent detection of two different physical
quantities (velocity and strain) which are multiplied.

Pavic then addressed the influence of finite sampling time, T, on
measurement accuracy for both deterministic and random stationary
processes and proposed guidelines for the duration of T in both cases.

After presenting some results of surface intensity measurement on
an elevator drive mechanism, he concluded that the technique has a well
founded physical meaning but requires a more efficient measuring
technique than one based on strain gages so that a large number of
measurements can be easily taken in order to fully exploit the
information contained in each reading.

White and Wilby at Astron Research and Engineering wrote a report
in 1987 to NASA regarding noise control in aircraft structures which
reviews various means of flexural structural intensity measurement and
outlines Astron’s use of the two-accelerometer approach for broadband

random noise excitation.
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In their review of the various methods of measuring structural
intensity they first considered the two-accelerometer approach to
measuring farfield flexural intensity. They recommended as a general
rule a transducer spacing of less than A/4 for valid finite difference
approximations but greater than A/100 to allow for enough phase
difference to be measured. They also mentioned the possibility of
strain gages, referring to Pavic (1985A, 1985B) but noted that these
must be placed on both sides of the measurement surface to distinguish
between in-plane and bending waves. This is not always possible in
aircraft structures.

Also mentioned is the possibility of nearfield acoustical
holography (Williams, Dardy, and Fink 1985). As an extension of this,
White and Wilby also suggested the possibility of scanning a surface
with a single acceleration or velocity transducer (such as a laser
vibrometer) and forming the cross-spectrum among pairs of points all
across the surface. Proper data processing would provide an intensity
vector map. The authors also reviewed optical holography (Clark and
Tucker 1985) and finite element modeling as research tools in structural
intensity.

For their experimental investigation they excited a ribbed plate
with broadband random noise with the Iintent of measuring intensity.

This was freely suspended by a bungee cord. A conservative upper limit
of 2000 Hz was set on the frequency of excitation to prevent appreciable
mass loading by the accelerometers. The spacing was arranged to

maintain a travelling wave phase difference of at least ten degrees but

not more than ninety degrees.
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Unfortunately, repeated tests of attaching and remounting the
accelerometers in the same location showed that there was in some cases
a random phase variation of as much as 8° when below 2000 Hz while using
beeswax mounting for ease of probe relocation.

Care was taken to allow for the analyzer sampling time to be
greater than the structure reverberation so that time-delay bias errors
would not adversely influence the results. Damping was applied both to
reduce reverberation time as well as to test the ability of the
technique to detect the resulting power flow changes. Coherence between
the transducers was checked as a means of verifying the reliability of
the intensity measurements.

As a result of these tests, White and Wilby concluded that it is
possible to measure the structural intensity in a structure driven by
broadband random noise (limited in frequency by transducer mass loading
and spacing considerations), and that the accelerometer technique could
give reliable intensity results as close as 0.4) from a structural
discontinuity for flexural wave motion.

Carroll (1987) researched the accuracy of farfield flexural
intensity measurements which can be obtained by using two
accelerometers. He reported that phase errors of several degrees can
exist at low frequencies due to cable induced strain associated with the
motion of the cable. To avoid this problem he used annular shear
accelerometers which demonstrated a phase accuracy of approximately
0.1°. This amount of phase accuracy provided flexural intensity
measurements by the cross-spectral technique which agreed with classical

measurement methods to within 1 dB for loss factors greater than 0.006.
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The classical methods Carroll referred to include a standing wave
technique and an energetics technique. These are non-phase sensitive
intensity measurement methods which are applicable to power flow in
reverberant beams and rods. These two techniques, which form the basis
of verification for the laser Doppler cross-spectral techniques studied
in this thesis, are outlined in further detail in the chapters on
flexural and longitudinal intensity measurements.

A sampling of more recent work in structural intensity
measurements consists of three papers published in NOISE-CON 88
proceedings. Downing and Shepherd from NASA Langley Research Center
submitted a paper detailing their use of a five-accelerometer probe to
measure power flow in a beam. The intent was to illustrate an
accelerometer array which is capable of accurately measuring the
structural nearfield power flow in the beam. Central finite
differencing of the five equally spaced points occupied by the
accelerometers allowed all of the spatial derivatives in the flexural
power flow expression to.be estimated so that no farfield approximations
need to be made. The power flow at the central position was then
measured.

Determination of the net power flow was made by measuring the
various signal cross-spectra and using the following formulation
(according to the paper):

B

x = 2A3w3 (Im[Gm - 2G23 + 2C~3 = G53] +

Im{Gy; - 2G3; + Gy - Gau + 2G34 - Guil) (1.52)

where
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I, = Axial power flow due to bending

B = Bending stiffness

A = Accelerometer spacing

w = Circular frequency
(Although Im(G,;) and Im(G,,) are zero since autospectra are real
quantities).

Downing and Shepherd tested the apparatus on a "semi-infinite"
beam (one end buried in the sand) with a blocking mass clamped to the
beam to present a structural nearfield. Broadband noise was applied to
one beam end (ranging from 200 Hz to 1000 Hz). Results showed that the
five-accelerometer probe was in close agreement with a two-accelerometer
probe for the farfield. Close to the blocking mass (2 cm away) however,
the two-accelerometer power measurements were lower by 6 dB (as would be
expected).

The authors concluded that this five-accelerometer probe yields
accurate results of power flow in the nearfield but that this method is
much more susceptible to phase errors than the two-accelerometer method.
A finite difference error analysis for this array is not given.

Kendig, from Westinghouse Research and Development Center,
verified the ability of intensity techniques to detect sources of
compressional and in-plane shear waves in bars and plates (Kendig 1988).
He first tested what is effectively the two-accelerometer technique for
compressional power flow in a rod. Two pairs of accelerometers were
mounted tangentially on the rod. The net signal from each pair of
diametrically opposed accelerometers (which canceled out opposite

components of longitudinal motion due to possible bending in the rod)
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was used for input to the two-accelerometer method. The intensity for
the compressional wave is measured as:

-SY - - dw

- A o Im{G(uy,u;,w)} ) (1.53)

(Although G( ) is typically used to denote the one-sided spectrum which
does not exist from -« to 0). 1In the above equation Im{G(;l, ;2, w))

is the imaginary part of the cross-spectrum of &1 and &2. Also, ;1

and ;2 are signal pairs of closely spaced, tangentially oriented
accelerometers. Additionally S, Y, A are the rod cross-sectional

area, Young's modulus and accelerometer pair spacing, respectively.

Similarly, Kendig noted that for in-plane intensity in plates the
appropriate cross-spectral formulation can be derived from the following
intensity expression:

I, = <(1_‘fh:?) [%i_v . %i_*]éy + Gh %i_’ + %Ey_x]é’k (1.54)
where I, is the intensity in the x direction, Y and G are the Young's
modulus and shear modulus respectively, h is the plate thickness, £, and
€y are the x and y displacements and the overdot represents the time
derivative. The intensity in the y direction is formed in an analogous
manner. The first component is due to normal stress and the second is
due to shear stress.

Laboratory experiments were conducted for both a rod and a plate.
In both cases tangentially oriented accelerometers were used and were
paired up in the through-thickness direction to remove any signals due

to bending. The rod was excited from both ends: one signal was a pure

tone, the other was broadband noise. Results showed that the technique
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correctly identified the opposing direction of power flow for the pure
tone versus the noise.

The plate test was conducted in a similar fashion with two pairs
of accelerometers closely spaced relative to a wavelength and oriented
to respond primarily to axial motions. Results showed that the power
flow directions were also correct when shakers were used on opposite
edges with differing excitation frequency content. No quantitative
checks on power flow results appear to have been conducted.

Using an application of structural intensity measurements to
cylinders, Meyer presented a method to measure flexural waves in slender
cylinders (Meyer 1988). (This approach as with the flat plate
approaches, neglects rotational inertia and shear deformation). The
expressions for the axial (x directed) and tangential (4 directed)

flexural intensities (analogous to the flat plate expressions) are:

-M. = (B Vzw - (B
PR PR AT e
_ B(l _ y) 1 8% %
_1.'.7 axaa E ! t>t. torsion

- =/pld aw _fpfl 8%, 8% 1] 3%
"= (32577 ), <B[?2W Y 3 %) 7

_ _ 1 8w 8%w
<B(1 u) T 343x 3x3t>t_ torsion

t bending (1 . 56)

where
B = bending rigidity
r = radius of cylinder
X = axial direction

§ = tangential direction
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w = radial displacement
t = time
v = Poisson’s ratio
n,, My = intensity
< >, = time average of a quantity
shear, bending, torsion = the various components of intensity.
Using five accelerometers arranged in a "cross®™ shape with axes in
the axial and tangential directions and using finite difference
approximations with a displacement field for an infinite cylinder
excited by a harmonic force, the following spectral representations for
the axial and tangential intensities are derived:

-B 2k3
0 = S (268 + 2| [Im(S21) - Im(Sz) (1.57)

and

-B 2k
n, - o |22 * (1 + v)K2||ImS,,

-B
;;gzz;;‘(l - v)kg(Sz; + Sy3 - 2Re(S;y)] (1.58)
where k, and k; are the axial and tangential wavenumbers, and S with
subscripts represent the spectra of acceleration signals as numbered in
Figure 1.8 (k;, and ks are also obtained by formulations using the
appropriate spectra). Meyer also developed the relationship between
Pavic’s structural surface intensity and intensity of bending waves in
cylinders. Using structural surface intensity transducers and the five

accelerometer array on a cylinder, tests showed good agreement of the

derived relationship in the axial direction.




()]

Y

Figure 1.8 Accelerometer Array Used for Flexural Waves
in Slender Cylinders (Source: Meyer 1988)
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Chapter Il
LASER VIBROMETRY
BACKGROUND AND USES TO DATE

The laser vibrometer is potentially an ideal instrument for
measuring structural intensity. It focusses laser light to a small spot
on the vibrating object and uses the backscattered light to provide the
surface velocity in "real time." Consequently the surface is not mass-
loaded or locally stiffened as it can be when a conventional transducer
is attached.

The advantages of using coherent light to detect surface velocity
were recognized early. It was not long after the invention of the laser
in the early nineteen sixties that experiments with the first laser
vibrometers were conducted (see Massey (1967) for example). This is not
surprising since the principles of coherent detection were already well
known. What was needed was a source of coherent light to make the
technique feasible.

A review of laser vibroueter literature since that time reveals
much activity and many applications. Although the laser vibrometer is
still not widely used, there have been efforts devoted to making it an
affordable, portable device which is not difficult to use (Massey and
Carter 1967; Buchave 1975; Halliwell 1979; Pickering, Halliwell, and
Wilmshurst 1986). Also on the practical side, papers have been
published on conversion of a laser velocimeter to a laser vibrometer

(Meynart 1984) and applications of laser vibrometry in engine diagnosis
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and in process control (Halliwell, Pullen, and Baker 1983; Halliwell and
Eastwood 1984; Eastwood and Halliwell 1985). McDevitt and Stuart (1989)
have recently illustrated how the technique can be used for
characterization of the dynamic properties of elastomeric materials.

The sensitivity of the laser vibrometer (or heterodyne speckle
interferometer as it can also be called) is addressed in a number of
references. When the signal is only obscured by shot noise, micro-
vibrations down to one nanometer have been reported for frequencies in
the MHz range (Willemin and Dandliker 1983). Phase accuracy of 4° has
been reported (Dandliker and Willemin 1981), although the authors note
that this was essentially limited by the phase accuracy of the network
analyzer used. More serious phase accuracy was not pursued. Angstrom
order displacement measurements transverse to the laser beam have also
been reported (Joyeux and Lowenthal 1971).

Laser vibrometry techniques have been used for detection of gated
harmonic surface waves on a steel block (Su 1980; Bouchard and Bogy
1985) where amplitudes down to 5 angstroms have been detected. The
scanning capability of a laser vibrometer has been used to its full
advantage in a computer controlled laser scanning system which can
reconstruct various participating mode shapes from a surface vibrating
in a stationary random fashion (Stoffregen 1984).

Applications where the non-contacting nature of the vibrometer is
useful have been reported such as in measuring tympanic membrane and
auditory organ vibrations (Buunen and Vlaming 1981; Willemin, Khanna,and
Dandliker 1987) and rotating flexible disk vibrations (Wlezien, Miu, and

Kibens 1984).
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Of course laser vibrometry is also amenable to fiber optic
applications where a normally optically inaccessible region can be
scanned to characterize the vibration response of an object. This is a
growing area in vibrometry with an increasing number of techniques
being reported (Cockson and Bandyopadhyay 1978; Thierry 1985; Lewin,
Kersey, and Jackson 1985; Waters and Mottier 1986).

POTENTIAL OF LASER VIBROMETRY AS
A STRUCTURAL INTENSITY TECHNIQUE

Practically all of the problems cited in Chapter I concerning
errors and limitations of current structural intensity measurcment
techniques could be circumvented by using a two-channel laser vibrometer
probe for these measurements. The vibrometer laser beam has none of the
disadvantages of accelerometers. There are no linear or rotational
inertia effects and no local stiffening effects to alter the dynamic
behavior of the object. There are no mounting effects to distort phase
information from the surface. Additionally the vibrometer allows a
smaller point from which data are taken on the surface so that the
separation distance between two points can be smaller if necessary than
is possible using accelerometers.

Probably the biggest advantage to using a two-point laser
technique for intensity measurements is the ease with which the
intensity can be mapped. The strength of intensity methods lies in
their ability to provide a mapping of power flow. Bonding
accelerometers or strain gages to the surface and doing this repeatedly

to obtain this energy flow map is inconsistent with the power of the
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intensity technique. Laser scanning would be a far simpler approach
yielding a much quicker mapping of power flow.

The two-channel laser Doppler approach appears to be superior to
other possible optical techniques for structural intensity measurements.
As compared to real time holography, it is much more sensitive, it does
not require a laboratory setup, and combined with the use of a spectrum
analyzer the two-channel vibrometer is a real time intensity technique
whereas holography is not.

Similarly the two-channel vibrometer would be a much more
sensitive technique than a two-probe Fotonic sensor (a white light fiber
optic displacement meter) would be. The vibrometer technique also
allows for large standoff distances from the vibrating object whereas a
Fotonic sensor probe would have to be typically a millimeter from the
object surface. This is a disadvantage in studies where there is fluid
flow around the object. Additionally, a Fotonic sensor cannot obtain a
good signal from a curved surface whereas the vibrometer can.

There are a few disadvantages associated with a two-point laser
approach to structural intensity measurement. The most obvious is the
expense. Two accelerometers can cost almost two orders of magnitude
less than the laser system proposed for these measurements. However, as
lasers and laser interferometers continue to gain popularity in
industry, the cost of such a system should decrease markedly.

Secondly, any optical interferometer requires vibration isolation
since it is not the absolute vibration of the object but rather the

object vibration relative to the optics which is measured. This can be
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a disadvantage especially in situations where the ambient vibration
level is fairly high requiring a vibration isolation system.

Fortunately, however, the vibrometer optics can be designed for
long offsets between the optics and the vibrating object. Researchers
at ASTRON Research and Engineering for example have successfully used a
laser vibrometer at a distance of sixty meters from the object when
special collection optics were used. This permits the use of the
instrumentation far from the vibration source and greatly facilitates
vibration isolation of the optics.

Another disadvantage occurs in studies where object motions
transverse to the laser beam are greater than the illuminated spot size.
In this case a loss of signal can occur for brief periods which would
cause a distortion of the velocity time history depending on the
dynamics of the processor. Fortunately, this will not be a problem for
the study of flexural waves and it may not be a problem for the study of
longitudinal waves as long as the vibration amplitudes are not
excessive.

Finally, the laser vibrometer, since it is sensitive to velocity
rather than acceleration is not as sensitive as an accelerometer. The
background noise in the vibrometer prevents simply using the derivative
of the velocity signal for equivalent sensitivity. This situation can
make broadband excitation studies difficult if the excitation source
provides a flat object acceleration autospectrum since the corresponding
velocity autospectrum then falls off 1s 1/w?. However for single
frequency and narrowband analyses (which encompass nearly all of the
structural intensity studies to date) this broadband signal fall-off is

not a problem.




58

THE TWO-CHANNEL LASER DOPPLER
VIBROMETER SYSTEM

The two-channel vibrometer (TCV) focuses laser light onto two
spots on a vibrating surface and by using the Doppler shift in the
backscattered light, yields the real-time surface velocities at these
points. Scanning capability allows iniormation to be obtained at points
over the whole surface. The unit has the following capabilities: it
provides relatively high sensitivity (which is not limited to the laser
wavelength), it provides the relative amplitude and phase over the
surface even for random motions; it has a high frequency response
(theoretically up to the MHz range); it can provide any one of three
components of motion for the two points; it is readily adaptable to
laser Doppler velocimetry if necessary; it is readily adaptable to fibre
optic applications; it can be used on any diffuse surface; it has enough

optical power for submerged structure applications; and if desired, it

can be converted to a laser speckle interferometer for normal and

transverse displacements. ‘
The only limitation of the TCV system as opposed to full-field

optical techniques is that it does require scanning and hence cannot

provide vibration information simultaneously over the entire surface.

lLiowever, this is only a limitation in the case of random vibration which

is non-stationary. If the random vibration is stationary, scanning the

surface provides statistical information which is just as useful and

"accurate" as full-field information. Fortunately, most random

vibrations of interest are stationary and hence scanning is not a

serious limitation.




SETUP OF THE TCV SYSTEM

Laser Doppler vibrometry is effectively the same as "heterodyne
speckle interferometry," except the latter measures displacements and
the former, velocities. 1In an article by Dandliker and Willemin (1981),
they illustrate the two different optical setups in heterodyne speckle
interferometry which can be used to detect either normal or transverse
displacements. These are much the same as the different optical
arrangements in laser Doppler vibrometry. There is an optical
arrangement for surface-normal vibrations and a second optical
arrangement for transverse vibrations. These setups will be described
below. (Theory is explained in the next section.)

“he setup of a single laser vibrometer unit for detecting surface
normal vibrations is shown in Figure 2.1. The laser light is first
collimited to allow for an optimum optical signal. The single beam is
then sgplit by a beamsplitter which is adjusted to split the beams into a
ratio f approximately 99.5 to 0.5. The more powerful beam, the
"object" beam or "power" beam, continues through the remaining optics to
the be:r polarizer which allows for the rotation of the axis of
polarization for this beam. It then is focused onto the object by a
lens.

The weaker beam, the "reference" beam, is frequency shifted by
40 MHz by a Bragg Cell and then is returned along the optical axis by a
"vibrometer adaptor." This reference beam, then, never leaves the
optical system.

The object beam, upon backscattering from the target surface, is

collected by the lens (dashed line in Figure 2.1) and also is directed
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along the optical axis by the adaptor. The combined object and
reference beams are then focused onto the face of a photodetector where
they interfere. The electrical output of the photodetector, an FM
signal with a carrier of 40 MHz, is then "downmixed" (heterodyne
converted) to a more convenient carrier frequency of 50 kHz. This FM
signal with a 50 kHz carrier is then demodulated by a phase-locked loop
(PLL) to provide a voltage which is proportional to the target normal
velocity.

Of course, since the actual system is a "dual" system there are
two parallel units of this type which are activated by a single 4-watt
argon-ion laser. At the ends of the vibrometers are the scanning
mirrors. A schematic appears in Figure 2.2.

The optical components in the system are manufactured
commercially. The mixers are commercially manufactured as well. The
phase-locked loop processors were designed and assembled at ARL Penn
State.

Scanning mirrors for the system are finely adjustable manual
control mirrors. Computer controlled motors for beam scanning were not
considered justifiable because of the high cost and the fact that the
fine positioning offered by computer control would have to be calibrated
when shooting through imperfect plexiglass windows and water.

The setup of the laser vibrometer for detecting transverse motions
is simpler than that for surface-normal motions and is optically
identical to that used for velocimetry. It is illustrated for a single

unit in Figure 2.3. Notice that this arrangement uses both beams as
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"object” beams rather than using one object beam and one reference beam.
Consequently, it does not require the vibrometer adaptor as does the
setup for surface-normal motions.

In the transverse motion arrangement both beams have the same
power and so the beamsplitter is adjusted to provide a splitting ratio
of 50-50. The polarization rotator, used in the surface-normal optical
setup, is not necessary in this setup. The two beams are focused onto
the target by the lens. The backscattered light of the combined beams
is collected by the same lens and focused onto the face of the
photodetector. As in the previous setup, the output from the
photodetector is an FM signal with a 40MHz carrier. This is downmixed
to a carrier of 50 kHz and demodulated by a PLL to provide a voltage
output which is proportional to the target transverse velocity.

The transverse velocity measured by this arrangement is the
velocity which is in the same plane as the two converging beams. The
two beams can be rotated in order to provide the transverse velocity at
a different orientation. Rotational increments of 45° are available.
Typically, only the transverse velocities in the horizontal and vertical

directions are of interest.
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FUNDAMENTALS OF OPERATION

The two optical arrangements referred to above, the surface-normal
vibration detection scheme and the in-plane vibration scheme, are
referred to as the "reference beam technique" and the "differential
Doppler technique," respectively, and in fact are both used in laser
Doppler velocimetry. Drain (1980) provides very illuminating
explanations of both of these techniques. These explanations are
primarily oriented towards velocimetrv (fluid velocities) rather than
vibrometry (solid vibrations), but the theory is fundamentally the same.

There are two major differences between using these optical
techniques for vibrometry rather than velocimetry. First, in vibrometry
the laser is focused onto a diffuse solid surface resulting in a large
number of "scatterers" whereas in velocimetry there are ordinarily only
a few scatterers passing through the focal region or "probe volume" at
any time. More specifically, the optical signal backscattered by a
diffuse solid surface consists of "laser speckle." This is a randomly
spotted pattern caused by the random constructive and destructive
interference through space of the backscattered coherent light and is
due to the surface roughness. These speckles represent the multiple
"scatterers" seen by the photodetector. Ennos (1978) provides useful
details on laser speckle and its applications to interferometry.

The second major difference in applying these optical techniques
to vibrometry rather than velocimetry is that the optical signal in
vibrometry is a continuous signal whereas in velocimetry it consists of
individual pedestaled pulses as the light scatterers pass through the

probe volume.
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The continuous optical signal in vibrometry is best processed by a
phase-locked loop (although gated rate meters, spectrum analyzers, and
counters have been used) whereas the discontinuous signals in
velocimetry are usually processed by counter processors.

Although there are many good references which explain the theory
behind the reference beam and differential Doppler techniques (such as
Massey 1967; Buchave 1975; Drain 1980) an explanation of the first
principles of the two techniques is presented here briefly for the

sake of completeness.

The Reference Beam Technique

This technique, which provides the velocity normal to the surface,
is fundamentally a Michelson interferometer setup. This is what will be
used to explain the basic principles.

Figure 2.4 shows a Michelson interferometer arrangement. Coherent
light emitted from the laser is split by the beamsplitter to form two
beam paths. The "reference beam"” path travels from the beamsplitter to
the mirror, back through the beamsplitter and to the photodetector. The
"object beam" path travels from the beamsplitter to the object back to
the beamsplitter (by backscatter) and to the photodetector. The two
beams interfere at the surface of the photodetector. Depending on their
phase difference at the photodetector, they will present a dark or
bright image to the detector, thus causing a low or high electrical

output from the detector.
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Assuming an initial phase difference of iy between the beams when
the object is in position D, a displacement of the object of § causes a
relative phase difference of:

26
X

¢ - ¥ (2.1)

at the face of the photodetector. Taking the time derivative leads to:

d¢ 2 ds
dt T x dt
or
2
£-3v (2.2)

where f is the frequency at which the interference fringes are sweeping
across the face of the detector and v is the surface velocity. In this
way the frequency of photocurrent issuing from the photodetector is
directly proportional to the surface velocity. Actually, it is
proportional to surface speed rather than velocity since motion of the
object either toward or away from the optics will cause the same
frequency; no directionality yet exists in the signal.

In order to impose directionality one of the beams (the reference
beam, for example) can be shifted in frequency by some value f,. The

resulting frequency observed by the photodetector is then:

2v

f =-f, + Y (2.3)

At the expense of introducing a carrier frequency of f,, directionality
is now provided; velocity of the object toward the optics increases the

frequency above f, while a velocity away from the optics decreases the
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frequency below f,. The signal from the photodetector is then a
frequency modulated signal with a carrier of f,. The frequency
deviations from the carrier are directly proportional to the surface
velocity.

There are some relatively unavoidable phenomena which degrade this
signal by way of amplitude modulations (which can be a problem in severe
cases) and frequency noise (which limits the resolution of the device).

Amplitude modulations are caused primarily by the laser speckle
emanating from a diffuse object. 1If they are severe they can cause
intermittent loss of signal by the processor. Frequency noise is
attributable to a number of things: laser speckle, photodetector shot
noise, and vibration of the optics to name a few. Noise in laser
vibrometry is considered in detail in a later section.

Principles illustrated by way of the Michelson interferometer are
easily applied to the actual setup of one vibrometer unit as illustrated
in Figure 2.1 except for the following details. These include focusing
by the lens, collimation, and polarization rotation as explained below.

Focusing of the object beam allows the vibrometer to be sensitive
only within the small depth of field located at the focal distance from
the lens. This has an advantage; one can concentrate on what is
happening at the focal "plane” without interference from any other
surfaces (such as windows) along the optical path. Focusing also has
several disadvantages; the vibration amplitude is limited to the depth
of field, re-focusing is required for surface scanning, and collimation

is required. Fortunately, limiting the vibration amplitude to the depth
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of field is rarely a problem; focusing is primarily an inconvenience,
and collimation is a simple one-time procedure.

Collimation ensures that the reference beam is planar and that the
object beam, as it converges to its waist at the lens’ focal distance,
is also planar. The interference of two planar co-linear beams yields
the best signal at the detector. (Co-linearity of the reference and
object beams is assisted by the fact that the lens collects the
backscattered "spherical” wave and effectively re-collimates it.) The
adaptor then returns the two planar beams to the photodetector along the
same path.

In regard to focusing, the relationship between the frequency at
the photodetector and the surface-normal velocity is altered by the lens

angle # shown in Figure 2.1. When the object moves a distance d in the

2d
surface-normal direction the phase change is not simply Y but
24 6
T cos 5 so that the equation relating frequency to velocity becomes:
2v g
f = f; cos 5 . (2.4)

Finally, if the velocity vector makes an angle of 8 with the

optical axis the net shift is:

-2V, g, 2.5
f X cos cosf (2.5)

Also, as shown in Figure 2.1, the frequency shifting in the actual
unit is accomplished by an acousto-optic modulator or Bragg cell. In
the TCV system this shifts the reference beam frequency by 40MHz. This
i1s accomplished by diffraction of the entering team into several orders

by passing it through a transparent medium experiencing acoustic waves
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at 40 MHz. Only the first diffraction order is kept and becomes the
"reference beam."

This is the least noisy way of shifting the reference beam. Other
approaches such as passing the beam through a rotating diffraction
grating or reflecting the beam off of a rotating wheel add a significant
amount of frequency noise to the system due to rotational velocity
variations and consequent shifting-frequency variations. These
approaches are, however, much less expensive than the cost of a Bragg
cell.

As a final difference between the Michelson setup (Figure 2.4) and
the actual vibrometer setup (Figure 2.1), the vibrometer includes a
polarization rotator. This enables one to rotate the (linear)
polarization of the object beam and thus to maximize the signal by
aligning the polarization of the reference and object beams for maximum

interference.
The Differential Doppler Technique

As noted previously, this technique allows for the detection of
transverse motions. The setup is illustrated in Figure 2.3. There are
several approaches to describing how transverse motions cause a
frequency shift in this arrangement. Probably the two simplest
approaches are the "fringe model" often used in explaining one component
velocimetry (see Drain (1980C) for example) and the other is a path
length difference model as explained in Ennos (1978). Although these
essentially are the same, the path length difference approach will be

used here.
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Referring to Figure 2.5, the target surface is illuminated by two

plane waves coming in at equal angles to the surface normal. If the
surface moves "down" (in the figure) some amount §, then every point on

the surface experiences an increase in path length relative to the

6
upper beam of: A, = §sin 7 - Equally, every point on the surface
6
experiences a decrease in path length of A = §sin 7 relative to the
lower beam. The total change in path length experienced by every point
6
on the surface is 47 = 26sin 7 - The corresponding phase change (in
Ar 2 6

cycles) is u Y §sin 7 Taking the time derivative yields:

d¢ 2 ds g 2v 6

E; = f = I EE sin 5 - 3 sin 5 (2.6)

which relates the surface velocity to the fringe passing frequency at
the photodetector for the differential Doppler technique.

Unfortunately, both this explanation for the presence of a Doppler
signal as well as the fringe model explanation predict zero beat signal
for solid surfaces; the various points within the illuminated area
initially have a uniform phase distribution from O to 2x and when the
object moves there is a uniform phase shift at every point. This
results in no net change in backscattered intensity to the detector and
theretore no net beat signal. Drain (1980) refers to this situation and
notes that "experiment and more detailed theory show that the signal
does not completely disappear"” as the number of particles in the probe
volume (in the case of LDV) becomes very large.

The presence of a beat signal for the differential Doppler
technique applied to solids lies in the fact that the intensity received

by the photodetector consists of a speckle pattern which, as noted
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previously, is characteristic of coherent light scattering from an
optically rough surface. However, individual speckles have an intensity
distribution which is not uniform but rather is skewed so that there is
some resultant bias for the entire illuminated area. For a strong
resultant intensity bias in the backscattered speckle pattern, the beat
signal will be strong as the surface moves. For a weak resultant
intensity bias in the backscattered signal, the beat signal will weaken
with much more D.C. than A.C. optical return to the detector.

Skew in the intensity distribution of the speckle field is
illustrated by Ennos (1978). The random phase distribution of the
detected speckle field also accounts for some illuminated surface areas
yielding high Doppler signals and others low Doppler signals (both in
the differential Doppler technique as well as the reference beam
technique). This is addressed by Rothberg, Baker, and Halliwell (1989).

One can see that the sensitivity ratio of the differential Doppler

technique to the reference beam technique is:

sin = 8
- tan T . 2.7)

cos

i

For small lens angles (which are typical), the differential Doppler
technique is considerably less sensitive.

Referring now to Figure 2.3 for the actual setup, collimation is
again necessary to ensure that the converging beams are planar as they
converge at the surface. This yields maximum interference. A Bragg
cell is also used in this setup as it is in the reference beam setup for

directionality. The backscattered light is collected through the center
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of the lens and focused onto the face of a photodetector. Issuing from
the detector is an FM signal which has a carrier frequency equal to the
Bragg cell shifting frequency and which is frequency modulated due to
the surface velocity in the relationship previously derived.

Similar to the other arrangement a downmixer reduces the carrier
frequency to 50 kHz for processing by the phase-locked loops. The
"dual" configuration for this technique is also as shown in Figure 2.2.
The only changes required to move from the reference beam setup to the
differential Doppler setup are to: remove the vibrometer adaptor,
change the beamsplitters to a 50-50 ratio, rotate the beams depending on
the direction of transverse motion desired, and check the focus on the

object.
LASER VIBROMETER SIGNAL PROCESSING

As noted previously the current from the photodetector in the
laser vibrometer is a frequency modulated (FM) signal. It has a carrier
frequency which is modulated by the motion of the surface by an amount

(for surface normal motions):

fo= 5V cos[%] + cosf (2.8)

The signal processor for the vibrometer must extract these
frequency deviations (Doppler shifts) and output a signal which is
linearly proportional to the Doppler shift. Massey (1967) who
constructed one of the first laser vibrometers used a phase-locked loop

(PLL) to perform this task. Many of the commercial vibrometers now
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entering the market use PLL processors (effectively FM receivers) to
perform signal demodulation.

A phase locked loop yields a DC voltage which is directly
proportional to the frequency difference hetween the input signal and an
internal signal. This frequency difference is the Doppler shift.
Consequently the output of the PLL is a DC voltage proportional to the
surface velocity.

A PLL is a feedback system, with the basic block diagram as shown
in Figure 2 6 (reproduced from Gardner (1979)).

The phase detector puts out a voltage, V4, proportional to the
phase difference between the input signal and oscillator signal. This
voltage is filtered by the loop filter to suppress high frequency signal
components and noise. (The filter design also controls the dynamic
characteristics of the loop). Output from the loop filter is the
control voltage. The voltage controlled oscillator (VCO) increases the
control voltage by a gain of (K;) and changes its center frequency by
Aw = KgV,. The output of the VCO is a phase angle which is the integral
of the VCO frequency. This phase angle is then fed back into the phase
detector. The output of the PLL is taken after the loop filter and is
the control voltage or filtered error signal.

As long as the changes of the input signal frequency are slow
enough to remain within the bandwidth of the loop and as long as the
signal remains sufficiently above the noise the PLL will remain "in
lock." More rapid input frequency changes or lower amplitudes would
cause the unit to lose tracking capability temporarily until it re-

acquires lock.
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The phase-locked loops used for this experiment have been designed
so that the VCO has a center frequency of 50 kHz. This was considered
high enough to be beyond the largest expected Doppler shift. The
maximum frequency deviation (Doppler shift) for the PLL’'s is
approximately + 30 kHz. This corresponds to maximum velocities of
+ 0.78 cm/s for out-of-plane motion and + 23.4 cm/s for in-plane motion
assuming 750 mm focal length lenses are used (i.e. §/2 = 1.91°). These
values have been found to be sufficient for laboratory applications.

The maximum modulation rate is approximately 30 kHz. This
corresponds to the maximum vibration frequency which the loop can track
without losing lock.

The two PLL processors designed for this test have to be
calibrated for amplitude and checked for phase mismatch. This is
accomplished with the use of an FM signal generator and a spectrum
analyzer.

PLL amplitude sensitivity, i.e. the amount of frequency deviation
(Doppler shift) per volt of PLL output is determined by a well known
Bessel zero technique as explained by Waters and Mottier (1986). A
brief explanation follows.

The spectrum of an FM signal consists of a series of Bessel
function sidebands. The heights of these sidebands are related to the
peak frequency deviation in the FM signal. Using an FM signal
generator, the amount of frequency deviation can be altered to reduce
one of these sidebands to zero. Setting the corresponding Bessel
function equal to zero will then yield the exact peak-to-peak frequency

deviation in the FM signal. This is compared to the peak-to-peak
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deviation in the voltage out of the PLL (subject to the same FM signal).
The ratio of these gives the PLL sensitivity in Hz/volt at this
modulation frequency. This can be performed at various modulation
frequencies to find PLL sensitivity or gain factor as a function of
modulation (or vibration) frequency. Alternatively a carrier frequency
can be modulated by broadband noise to provide the PLL gain factor
variation over a wide frequency range. This signal can be obtained by
use of an FM signal generator and a random noise source.

Phase matching of the two PLL’s has been checked by passing the
same FM signal through both units and checking for the phase difference
at their output by recording their output cross-spectrum using an FFT
spectrum analyzer. The phase difference versus frequency up to 10 kHz
is shown in Figure 2.7. Phase difference is large for low frequencies,
levels off to 2.5 degrees from 600 Hz to approximately 4 kHz, is
negligible from 4 kHz to 6.5 kHz, then slowly increases up to 10 kHz.

The amplitude and phase matching of the two PLL units can easily
be .mproved. No strict tolerances were enforced on the design of these
first two units. However, for the purpose of this work, the amplitude
and phase data from these two PLL's are taken again at the specific
frequencies of the test to provide the maximum accuracy of the PLL
amplitude and phase data for each structural intensity test. This
allows fer accurate comparison of the test results to measured power
inputs so that the feasibility of using the two-channel vibrometer for

structural intensity measurements can be ascertained.
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LASER VIBROMETER NOISE SOURCES

Characteristics of Laser Speckle

When coherent light is scattered by a rough surface a random
intensity pattern is generated in space. This is caused by the random
interference of the light due to each point on the surface acting as a
"source" with its own random phase and scattering angle. The resultant
complex amplitude of the scattered light at any point in space is the
coherent addition of all the sources each with its own random amplitude
and phase (a "random walk") relative to the point. This random
interference presents a high contrast grainy appearance called laser
speckle. Since laser vibrometry involves detection of the motion of
surfaces which are typically "rough" (relative to the wavelength of
laser light), speckle plays an important role in the quality of the
signal.

If a surface which is illuminated by a spot of coherent light
moves in a direction parallel to the illumination, so that the same spot
on the surface is always illuminated, the backscattered light (observed
on a screen for example) will contain a speckled intensity which will
not change appreciably with the object motion. The speckle pattern is
relatively insensitive to motion in this direction. However, if the
same object is moved transverse to the illumination, the speckle pattern
observed changes more significantly; an individual speckle will
translate along with the object motion momentarily, but then, as a
different population of scatters becomes illuminated on the surface, it

disappears. This phenomenon is referred to in the literature as
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"speckle boiling."” The different behavior of the backscattered speckle
for the two types of motions suggests separate evaluations of the
effects of normal and transverse motions.

A final general speckle "characteristic” should be noted before
considering the two separate motion effects mentioned above. This is
that the mean speckle size can be controlled if the speckle is focussed.
This requires a distinction between "objective speckle" and "subjective
speckle."

Objective speckle is the light pattern observed when coherent
light is backscattered from a rough surface and viewed directly on some
observation surface such as a screen. The mean speckle size in this

case is (Ennos 1978):
<og> = 1.2 X L/d (2.9)
where:

A = laser wavelength

L = distance from scatterer to observation screen

d = diameter of the laser spot on the surface

Subjective speckle, on the other hand, is the light pattern
observed when the speckle has been imaged by an optical system onto an
observation screen. (This is the case in vibrometry since the speckle
is imaged onto the surface of a photodetector). The mean speckle size

in this situation is (Ennos 1978):

<gp> = 1.2 2 £.1./d (2.10)
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where A, is the laser wavelength and, £.1. is the lens focal length, and
d is the aperture. Consequently the size and, hence, number of speckles

received by the photodector can be controlled by the imaging system.

Speckle Noise Due to Normal Motion

For motion which is purely parallel to the optical axis there 1s
one minor consideration. Large vibration amplitudes will cause some
amplitude modulation of the FM signal. This is typically not a problem
since the velocity information is in the frequency modulation of the
signal.

The amplitude modulation in this case is caused by large
excursions of the object which act to change the makeup of the received
speckle field. However, the makeup of the speckle field does not change
significantly when the identical scatters are illuminated on the surface
since the contribution of each of the scatterers does not change
appreciably. If a very poor FM signal is received initially at the
surface (one reason for which will be explained in the next section)
then a slight amplitude modulation caused by large normal vibration
amplitude could cause a temporary loss of signal during the vibration
cycle. This is referred to as signal dropout. The effect of temporary
signal dropout depends on the dynamics of the processor. If a good FM
signal is available at the measuring point it is unlikely that typical

amplitude modulations would be enough to cause loss of the signal.
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Speckle Noise Due to Transverse Motion

Transverse object motion, which is the principal motion of
interest in the laser Doppler mode, but which can also be present to
some degree when observing normal motions, has two forms of speckle
noise associated with it. The first is the possibility of signal
dropout. The second is frequency noise or "Doppler broadening" due to
the motion of the speckles across the face of the photodetector.

Signal dropout occurs in vibrometer systems when the amplitude of
the FM or heterodyne signal falls below the background noise or at least
below some threshold at which the processor can no longer track the
signal. The amplitude fluctuations of the heterodyne signal from the
photodetector are a manifestation of the statistics of laser speckle.

Meynart (1984) assessed the influence of transverse motion on a
vibrometer setup for the reference beam mode in terms of the amplitude
modulations caused by laser speckle. For interference between a single
speckle and a uniphase reference beam he derives the probability density

function for the amplitude of the FM signal to be:
p(A) = (A/2<I;> )exp - A%/4<I;>, (2.11)

where A is the amplitude of the FM signal and <I; >, is the ensemble
averaged light intensity over the scattering surface. The resulting

spatially averaged FM signal amplitude is:
<A>, = a<l;>, (2.12)
and the ratio of the standard deviation to the mean is:

op/<B>, = .523 (2.13)
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This means that due to the random amplitude and phase variation of
the speckle as the laser spot moves across the surface, the amplitude of
the FM signal will vary. According to the above results, it will vary
by a fairly substantial amount so that appreciable dropout periods would
be expected for sampling over the entire surface. This occurs when a
single speckle is used at any given surface location.

Instead of using a single speckle, the aperture of the focussing
system can be enlarged to allow a greater number of speckles to fall on
the detector. In this case, however, Meynart shows by a similar
analysis that the amplitude fluctuations are, however, not suppressed by
the speckle averaging process.

Pickering, Halliwell and Wilmshurst (1986) have designed a
vibrometer which uses a rotating disc to shift the frequency of the
reference beam rather than a much more expensive but less noicy Bragg
cell. In this instrument the reference beam is always subject to
amplitude modulation due to the motion of the disk transverse to *he
beam so that signal dropout during disk rotation is very likely Their
processor, a gated rate meter, samples the frequency and hc.ds the last
value of the Doppler frequency received when the FM amplitude drops into
the electronic noise. This results in "flats" in thc output voltage
which they have adjusted by thresholding the amp’itude to have a mean
duration of less than 0.25 x 10™* seconds for a frequency response of 20
kHz .

However for the instrumentation used in this study, where
frequency shifting is accomplished by a Bragg cell, signal dropout is

not a problem. This is because the small amplitudes encountered in the
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study of longitudinal vibrations (where the motion is transverse to the
laser beam) do not appreciably change the speckle field received by the
photodetector so that signal amplitude fluctuations should be minimal.

Large amplitude motions however, which might be caused by not
securing the object would cause large signal amplitude modulations which
may cause temporary signal dropout. The effects of this on the
demodulated signal depend on the dynamics of the signal processor.

A final implication of these signal amplitude modulations is that
surface scanning of the laser beam is restricted, but only to the extent
that at some points on the surface the beam may have to be moved a small

amount in order to obtain a good signal.

Doppler Broadening

Another general category of signal degradation which can be due to
laser speckle is Doppler frequency broadening. Ideally an object moving
at a constant velocity transverse to the laser illumination should
provide a pure single Doppler frequency (for optics in the laser Doppler
mode); its spectrum is a delta function. However, as noted in
Pickering, Halliwell, and Wilmshurst (1986), the transverse object
motion causes the backscattered speckles to sweep across the face of the
detector possibly undergoing speckle boiling in the process. This
creates nolse in the photodetector output which shows up as a broadening
of the Doppler frequency spectrum. This is referred to as finite
transit time broadening.

Except for very small detector areas, the initial translation of

the speckle across the detector can be ignored and the situation can be
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viewed as purely a speckle "boiling” case where the speckle changes its
phase as it moves across the photodetector. This is how Pickering,
Halliwell, and Wilmshurst (1986) approach the problem in order to derive
an expression for Doppler broadening due to finite transit time.

Through a straightforward analysis the authors calculate a standard
deviation in the Doppler signal of approximately 720 Hz due to this
effect for an object transverse velocity of 1 m/s and a laser spot size
of 0.5 mm. This represents a fairly negligible noise floor of
approximately 1.5 x 10™ m/s. The effects of finite transit time
broadening for the proposed studies are expected to be negligible since
in this case the transverse motion will be due to small amplitude
vibrations so that the photodetector always "sees" approximately the
same speckle content.

Other sources of Doppler broadening exist in laser vibrometry
beyond that due to laser speckle. Even with an ideal specular reflector
these sources of noise exist. Velocity gradient broadening for example,
is a result of the laser spot illuminating an area on the object which
contains some variation in velocity so that more than a single Doppler
frequency is received by the detector. For example, for a point on a

standing wave where the displacement is:
u({x,t) = A cos wt ¢ sin kx (2.14)
the velocity gradient is:

3%u(x,t)

3tax = - Akw cos kx ¢ sin wt (2.15)
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For some point X, and a laser spot size d, a variation of velocity
within d can be obtained. The maximum change in velocity within the
spot is approximately Akwd.

Doppler broadening can also occur due to the finite size of the
receiving aperture. Ideally signals received at various points on the
photodetector are perfectly in phase. However, for a finite detector
aperture there is some finite difference in the phase of the received
signal at different detector points due to the optical path length
differences between the various receiver points and the source.
Equivalently for a source moving with some constant velocity the
different parts of the receiver will detect slightly different Doppler
frequencies giving rise to a broadening of the Doppler spectrum. This
source of broadening should be negligible in the proposed
instrumentation since the object beam is effectively recollimated before
it is focussed on to the photodetector.

Laser linewidth broadening refers to the fluctuations in frequency
(or wavelength) of the emitted laser light. This can be caused internal
to the laser cavity or more seriously by noise or ripple in the laser
power supply or the electrical discharge (Pickering, Halliwell, and
Wilmshurst 1986). Since the Doppler shift from the vibrating object is
a function of wavelength, laser linewidth broadening will cause noise in
the velocity signal. This is a fairly unavoidable source of broadening
but it should not be a significant source of error, with the laser used
in the proposed apparatus.

Vibration of any of the optical components after the beams have

been split and before they interfere at the detector will induce an
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artificial vibration signal showing up as noise on the measured signal
which is considered a source of broadening. It is not difficult to
isolate the optical components from the source vibration in the
laboratory environment although this noise source can be particularly
detrimental to intensity measurements (as will be discussed later) and
must be checked with and without the source vibration. Additionally,
any "ambient" motion of the source relative to the optics in the
frequency range of interes